Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 10(18): e2100046, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34263551

RESUMEN

Monitoring the concentration of useful biomarkers via electronic skins (e-skins) is highly important for the development of wearable health management systems. While some biosensor e-skins with high flexibility, sensitivity, and stability have been developed, little attention has been paid to their long-term comfortability and optical transparency. Here, a conformable, gas permeable, and transparent skin-like Cu2 O@Ni micromesh structural glucose monitoring patch is reported. With its self-supporting micromesh structure, the skin-like glucose monitoring patch exhibits excellent shape conformability, high gas permeability, and high optical transmittance. The skin-like glucose biosensor achieves real-time monitoring of glucose concentrations with high sensitivity (15 420 µA cm-2 mM-1 ), low detection limit (50 nM), fast response time (<2 s), high selectivity, and long-term stability. These desirable performance properties arise from the synergistic effects of the self-supporting micromesh configuration, high conductivity of the metallic Ni micromesh, and high electrocatalytic activities of the Cu2 O toward glucose. This work presents a versatile and efficient strategy for constructing conformable, gas permeable, and transparent biosensor e-skins with excellent practicability towards wearable electronics.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Glucemia , Automonitorización de la Glucosa Sanguínea , Piel
2.
Sci Total Environ ; 773: 145684, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33940760

RESUMEN

Intertidal creeks play an important role in transporting nutrients between coastal ecosystems and ocean. Reclamation is a predominant anthropogenic disturbance in coastal regions; however, the influence of reclamation on carbon and nitrogen species and greenhouse gas (GHG) fluxes in creek remains unclear. In a subtropical salt marsh of eastern China, the seasonal patterns of dissolved carbon (DOC, DIC, CO2, and CH4) and inorganic nitrogen (NH4+-N, NO2--N, and NO3--N and N2O) species, and the diffusive fluxes of CO2, CH4, and N2O, were compared between the natural tidal creeks and the reclaimed creeks. Due to notably changed hydrological and biological conditions in the reclaimed creeks, concentrations of all dissolved carbon species, NH4+-N and NO2--N increased significantly by 60.2-288.2%, while NO3--N and N2O decreased slightly, compared to the natural tidal creeks. DIC and NO3--N were the primary components of the total dissolved carbon and inorganic nitrogen in both creek types; however, their proportions decreased as a result of elevated DOC, CO2, CH4, NH4+-N, and NO2--N following reclamation. Significantly higher global warming potential (0.58 ± 0.15 g CO2-eq m-2 d-1) was found in the reclaimed creeks, making them hotspot of greenhouse effects, compared to the natural tidal creeks. Our results indicated that changes in flow velocity, salinity, Chlorophyll a, and pH were the main factors controlling the dissolved carbon and nitrogen and consequent GHG emissions, due to reclamation. This study is helpful in understanding of carbon and nitrogen sink-source shifts resulting from land use changes in coastal wetlands.

3.
Sci Total Environ ; 747: 141214, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795794

RESUMEN

Coastal marshes have a significant capacity to sequester carbon; however, sea-level rise (SLR) is expected to result in prolonged flooding and saltwater intrusion in coastal regions. To explore the effects of SLR projections on net CO2 uptake in coastal marshes, we conducted a "double-check" investigation, including the eddy covariance (EC) measurements of the CO2 fluxes in subtropical coastal marshes along inundation and salinity gradients, in combination with a mesocosm experiment for analyzing CO2 flux components under waterlogging and increased salinity conditions. During the same measurement periods, the net ecosystem CO2 exchange (NEEEC based on the EC dataset) in an oligohaline marsh was higher than that in a low-elevation mesohaline marsh, whereas the NEEEC was lower than that in a high-elevation freshwater marsh. The declines in NEEEC between the marshes could be attributed to a greater decrease in gross primary production relative to ecosystem respiration. Waterlogging slightly increased the NEEms (NEE based on the mesocosms) because of inhibited soil respiration and slight changes in plant photosynthesis and shoot respiration. However, the NEEms measured during the drainage period decreased significantly due to the stimulated soil respiration. The NEEms decreased with increasing salinity (except under mild salinity), and waterlogging exacerbated the adverse impacts of salinity. The amplificatory effect of decreases in both leaf photosynthesis and growth under hydrological stresses contributed more to reduce the NEEms than to respiratory effluxes. Both waterlogging and increased salinity reduced the root biomass, soil microbial biomass, and activities of assayed soil enzymes (except for cellulase under waterlogging conditions), leading to limited soil respiration. The declines in plant growth, photosynthesis, and soil respiration could also be attributed to the decrease in soil nutrients under waterlogging and increased salinity conditions. We propose that the coupling of SLR-driven hydrological effects lowers the capacity of CO2 uptake in subtropical coastal marshes.


Asunto(s)
Dióxido de Carbono , Humedales , Dióxido de Carbono/análisis , Ecosistema , Elevación del Nivel del Mar , Suelo
4.
Ecol Appl ; 29(7): e01967, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257690

RESUMEN

Revegetation of pioneer plants is a critical phase in community establishment for mudflats in seriously degraded coastal wetlands. We tested a hypothesis of the importance of a "power balance" among propagule resilience and sedimentary and tidal disturbances for vegetation reestablishment. Our experiment used three types of propagules (seeds, seedlings, and corms) of native Scirpus species in the fringing flats with similar tidal flows and varying sedimentary intensities in the Yangtze Estuary. Regardless of the initial planting densities, the seed germination rate was extremely low in the field situation. Although the incubated seedlings were planted directly on the bare flat, the wave movement easily flushed the seedlings, even at the site with moderate sedimentary accretion. Failure of the revegetation practice using the seed and seedling materials indicated that the combined "growing and anchoring power" of young seedlings and "stabilizing power" of the sediment were insufficient to withstand the "dislodging power" of the tidal energy. In contrast, the planting approach with underground propagules (corms) proved to be feasible for vegetation establishment at the sites with moderate and low-level sedimentary intensities. The successful practice improved the tipping point of plant survival and tussock formation could be surpassed when the combined growing and anchoring power of seedlings that developed from corms with the stabilizing power of the sediment was greater than the dislodging power of the wave energy. However, at the site with high-level sedimentary intensity, the excessive sediment converted to the burying stress power as seedlings developed from the corms, revealing a burial threshold for seedling survival. The risk of seedling establishment was high when the burying stress power of the sediment far outweighed the combination of the growing power of the seedlings and the sediment removal power of the tidal current and surpassed the tipping point of vegetation die-off. Additionally, we checked the practice cost of the different approaches to ensure a highly cost-effective revegetation planning based on site suitability. This study highlights that understanding of the propagule-sediment-tide power balance offers a tool for improvement of the revegetation and management of site-specific sedimentary and hydrological environments for many degraded coastal ecosystems.


Asunto(s)
Ecosistema , Estuarios , Plantones , Semillas , Humedales
5.
Ying Yong Sheng Tai Xue Bao ; 26(8): 2518-24, 2015 Aug.
Artículo en Chino | MEDLINE | ID: mdl-26685617

RESUMEN

During 2010 to 2012, fish diversity in Qingcaosha Reservoir was studied based on gillnets (multi-mesh monofilament gillnets and single-mesh trammel gillnets), electric fishing, bottom trawl and cage. The investigation collected a total of 34 fish species, belonging to 8 orders, 12 families. Cypriniformes contained the largest number of species (19 species) in the collection, followed by Perciformes (6 species). Multi-mesh monofilament gillnets sampled 19 fish species, of which Coilia nasus was the dominant species. Hierarchical cluster analysis indicated that mesh size of monofilament gillnets had significant influence on the composition of catches: C. nasus and Hemiculter bleekeri were the dominant species of catches of gillnet netting with mesh size of 2 cm, while C. nasus was the dominant species of catches of the nettings with mesh sizes larger than 2 cm. Species numbers and the catch per unit of effort ( CPUE) had a decreasing tendency with the increasing mesh size. Mesh size also had significant effects on the total length distribution of the dominant species C. nasus, which increased with the increasing mesh size. The results suggested that a combination of several gears was required to reliably estimate fish diversity of standing waters.


Asunto(s)
Biodiversidad , Cyprinidae , Animales , China , Análisis por Conglomerados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...